yellowblog
14.だから、すべての人にアーテイストな生き方が必要。「アーテイスト=絵で飯を喰う」という幻想が、すべての人のアート教育の機会を奪う。音楽、踊り、建築、書、どんな分野でも、人間を人間たらしめる根本の教育。それがアート教育。矮小な幻想を常識と勘違いしてはならない。
usaginobike

経験上この2つを意識している。

1 誰かと話をする
2 手ではなく足を動かす


悩んでいる内容そのものでなくても、誰かと話をするだけで、自分には話をする相手がいる、自分は孤独ではないって確信できるだけで、少し気が楽になる。(悩みの内容によっては逆効果かもしれないが。かえって孤独を感じてしまう)
また、話し相手がいないなら、身体を使って何かしていれば、頭は悩み事ばかりに向かなくていい。だが、手を動かしているだけだと、むしろますます悩み事について考えてしまうことがよくあるので、ちゃんと全身に気を使わなければならないよう、足を動かすのがいい。アホらしいが、散歩や、室内やアパートなら「静かに階段昇降」を繰り返すのが個人的にお勧め。Ipodで音楽を聴きながらやってみると意外とすっきりするよ。

do-nothing

spring-of-mathematics:

Mathematically Correct Breakfast - How to Slice a Bagel into Two Linked Halves. If a torus is cut by a Möbius strip it will split up into to interlocking rings.

It is not hard to cut a bagel into two equal halves which are linked like two links of a chain. Figure 1:

  1. To start, you must visualize four key points.  Center the bagel at the origin, circling the Z axis. A is the highest point above the +X axis.  B is where the +Y axis enters the bagel. C is the lowest point below the -X axis.  D is where the -Y axis exits the bagel.
  2. These sharpie markings on the bagel are just to help visualize the geometry and the points.  You don’t need to actually write on the bagel to cut it properly.
  3. The line ABCDA, which goes smoothly through all four key points, is the cut line.  As it goes 360 degrees around the Z axis, it also goes 360 degrees around the bagel.
  4. The red line is like the black line but is rotated 180 degrees (around Z or through the hole). An ideal knife could enter on the black line and come out exactly opposite, on the red line. But in practice, it is easier to cut in halfway on both the black line and the red line. The cutting surface is a two-twist Mobius strip; it has two sides, one for each half.
  5. After being cut, the two halves can be moved but are still linked together, each passing through the hole of the other.

It is much more fun to put cream cheese on these bagels than on an ordinary bagel. In additional to the intellectual stimulation, you get more cream cheese, because there is slightly more surface area.
Topology problem: Modify the cut so the cutting surface is a one-twist Mobius strip. (You can still get cream cheese into the cut, but it doesn’t separate into two parts). See more at: Mathematically Correct Breakfast: How to Slice a Bagel into Two Linked Halves by George W. Hart.

Images: How to Slice a Bagel into Two Linked Halves by George W. Hart - Cutting bagels into linked halves on Mathematica. - Interlocking Bagel Rings

Maybe, that’s one of the reasons why I love bagel :)